Free enery landscape

Two universality classes of glasses
Two-spin interacting glasses: SK — model
versus
Multi-spin interactions: p-spin model

With very different phenomenology!



Signatures of the spin glass transition
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Signatures of the spin glass transition

X {emu/mole Mn)

%~ 0
. AN
03 :U \ 0.335} > ‘%.
a @ "~ » " ll Y x
o @ -E
& < 0,330} K
[a] —_—
] 2 o
5 o ®
° E 0325 .«
k%
o z
o ~
oy °, 0320 " .o
=] —.l L s I ) U R R B—
T. Coq 9.00 9.5( 1000
g ®00 6 o , . Vemperature, T(K)
Q o ¢ 90000000 oo
0 * L L | s I L s 1 L s L 1 J
S0 100
T(K)

AC-susceptibility in Cu-0.9%Mn
(Mulder et al., 1981, 1952)

(s,)=0, T>T,, (paramagnet)
<si>¢0, I'>T,, (spin glass)

5= )
=22 s)=6)

i
,32 2 17,
PSS
N l,j



Signatures of the spin glass transition
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Structural Glasses: viscous liquids



Structural Glass transition:Viscosity
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Glass transition:Viscosity

open networks

robust against
deformation

*barriers slowly
increasing

. TVF small,

D large

Log (viscosity in poise)

n(Tg)= 10" Poise <> 7,, ~10° —10’ sec

Vogel-Fulcher law

DT, j
1 =1, eXp| ———
[T_TVF

Log (viscosity in Pa-s)
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T
From C. A. Angell, Science, 1995
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*van der Waals
liquids

*high plasticity
above Tg

ebarriers
increase fast

* Lyr close to Tg

D small



Free energy landscape

Study two universality classes of glasses

Two-spin interacting glasses: SK — model
versus
Multi-spin interactions: p-spin model

Motivation for multi-spin models:

Optimization problems (3-SAT) have multi-spin interactions

* Langevin dynamics of mean field p-spin model is identical
to mode-coupling approximation to supercooled liquids!



Free energy landscape



Simple model for supercooled liquids
Kirkpatrick, Thirumalai, Wolynes

Supercooled liquids:

Liquids that fail to crystallize, ansd thus remain amorphous and non-rigid
but get very viscous and slow
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Simple model for supercooled liquids
Kirkpatrick, Thirumalai, Wolynes

Supercooled liquids:

Liquids that fail to crystallize, ansd thus remain amorphous and non-rigid

but get very viscous and slow
|2; |c- K\‘;‘ FCT' 410
Relation with spin models?? : . f
10
2
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Simple model for supercooled liquids
Kirkpatrick, Thirumalai, Wolynes

Simple liquid Hamiltonian g — @gy n £'¢p ¢ (r): local density
Langevin equation 9 _ g .

The dynamical evolution equations for such a liquid are identical to those of
a p-spin model (see later).

— Conjecture / belief: The glass transition and the structure of the glass
phase of models with interactions between p>2 spins captures the essence

of the physics of structural glasses (that have no intrinsic but only self-
generated disorder!)




The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ipai1 "'Uip = — Z Ji1---ip0i1 "'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
2'01;2 —i '

Gaussian disorder with zero mean and variance;

|
2 I
Tiviy = e

ensures O(1) local fields and O(N) total energy.



The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1°--ip0i1 "'Uip = — Z Ji1---ip0i1 "'O'z'p
D i1-++ip i1 <ia<---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
Zi 0;‘2 =N

Free energy functional -- Zeroth order (entropy):
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The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ip0i1 "'Uip = — Z Ji1---ip0i1 "'O'z'p
D i1-++ip i1 <ia<---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
z.a,? —i '

Free energy functional -- First order (mean energy):

dAB (B=0) 1 e -
—=—H - = Zil...ip igooipMiiy *» - My,

ap



The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ipai1 "'Uip = — Z Ji1---ip0i1 "'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
; a,? =N
Free energy functional -- Second order (Onsager / vdW-like term):
d?AP
A (U§)
d
U=H-—(H)—) 09X, (0; — m;) O\’ |50 = ——(H)q
- U() = _]% Z Jil---ip [O’il s ¢ 'Uip — My, - -mz-p 7 p(O'il — mil)mi2 s -mip]



The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ipai1 "'Uip = — Z Ji1---ip0i1 "'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
; a,? =N
Free energy functional -- Second order (Onsager / vdW-like term):
dzaP
gz = (U8) = (Uo (H = (H)o)) =
d
U= — (H) - ;aﬁxf(m —m) B3N\’ 3= = s (H)g
- U() = —Z% Z Jil---ip [O’il s ¢ 'Uip — My, - -mz-p 7 p(O'il — mil)mi2 s -mip]




The spherical p-spin model

Hamiltonian
H[O’] = Z Ju 1p021 %8 e ip = — Z Ji1---ip0i1 a5 'in
T d1eeip 11 <12<---<%p
Spherical constraint (easy to compute - but for p=2 trivializes the model)
2-0'2-2 =N

Free energy functional -- Second order (Onsager / vdW-like term):

dZAB NP pl » b1 ] N ) -
g7 = (U8) = (Uo (H = (H)o)) = rane(— " —00" M0 =a) = 50— = 11 =0)

d
U=~ (H) =Y 09X (0s—mi) 0\ |g=0 = —(H)g
1
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The spherical p-spin model

Hamiltonian

H[O’] = Z le po'h ’L'p = — Z Ji1---ip0'z'1 "'O'z'p
"y “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
z-az-2 =N
Free energy functional: (Oth +1st +2"9 order)
1

GUmi}) _ —5alogl —q) — —— Z Jig ooy My —g[l—pqp—1+q”(p—1)]

N 2 p'N



The spherical p-spin model

Hamiltonian
H[O’] = Z le po'h ip = — Z Ji1---ip0i1 "'O'z'p
" dq- “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
Z-O'? =N

Free energy functional:

Gmd) _ L 2 S g mem,
T_ IBOg p'NZ 21 ’l,p 71 (3

i1+ lp

Pure states = Minima of G |

free energy INUfa = G({mi})
weight of pure state in the full Gibbs measure Wa o< exp(—SN fo)

p g[l —p¢" ' +¢"(p—1)]



The spherical p-spin model

Hamiltonian
H[O’] = Z JZ1 po'h ,'p = — Z Ji1---ip0i1 "'Uip
" dq- “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
iaf =N

Free energy functional:

G{m})  _ 1 ioq_ay_ L o B - _
= Blogl p'N Z']’l Mgy * ° - My, 4[1 pe® '+ ¢®(p—1)]

i1+ lp

Pure states = Minima of G |

free energy [INifa = G({m;})
weight of pure state in the full Gibbs measure Wa o< exp(—SN fo)

Can show: metastable states capture the essential phase space: log()_ wa) = log(Zun)




The spherical p-spin model

Hamiltonian
H[O’] = Z le po'h ’L'p = — Z Ji1---ip0i1 "'O'z'p
"y “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
z.a,? =N

Free energy functional:

Gmip) _ _ Lo g = e _
=i~ —ggle(l—9) p,NZ'Ju ip My (1 =p" " +¢"(p— 1))

Pure states = Minima of G |

Write m; = \/qn; Z n? =N



The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ip0i1 % e 'Uip = — Z Ji1---ip0i1 a5 'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
D i ‘72'2 =N

Free energy functional:
G({mi}) _L - _L Y — ._ﬁ N, 2
=N = 23 log(1 — q) DN Z JireriipMiy -+ -y, — 2 [1 = pg?™" +¢"(p — 1)]

Pure states = Minima of G |

Write m; = \/anz Z
Peculiarity of spherical model:

« Minimization of G wrt n; is independent of T (Minimum-maximum merger)
» Minima have constant “angular” texture n;. Only g = q(T) changes with T, until instability occurs at T*.




The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ip0i1 % e 'Uip = — Z Ji1---ip0i1 a5 'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
D i ‘72'2 =N

Free energy functional:
G({mi}) _L - _L Y — ._ﬁ N, 2
=N = 23 log(1 — q) DN Z JireriipMiy -+ -y, — 2 [1 = pg?™" +¢"(p — 1)]

Pure states = Minima of G |

Write mi = \/qn; Z 0G/8q =0 Has no solution
.y , anymore

Peculiarity of spherical model: N <—>

* Minimization of G wrt n; is independent of T'! (Minimum-maximum merger)

» Minima have constant “angular” texture n;. Only g = q(T) changes with T, until instability occurs at T*.




The spherical p-spin model

Solutions to the angular equations:

T=0:
- minima exist with energies € € [6min7 eth]

e> ey, energy
landscape f
dominated by
saddles, not by
minima
Threshold =——> .,
Marginal states

Ground state =—> ...




The spherical p-spin model

Solutions to the angular equations:

T=0:
. minima exist with energies € € [emina 6th]
« There is an exponential number of them N(e) = eXp(NZ(e))
e> ey, energy * X(emin) =0, and X is concave, increases with e
landscape f4
dominated by ZA
saddles, not by
minima
Threshold == . | -
Marginal states

Ground state === ¢ .—




The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]
« There is an exponential number of them N(e) = eXp(NZ(e))
e> ey, energy * X(emin) =0, and X is concave, increases with e
landscape f4
dominated by
| Instability: T*=T*(e)
| Minima disappear at too high T
5 (merging with maxima)
frara

saddles, not minima

Threshold === .
Marginal states

Ground state == ..

=l

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]
- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e
fé

Are these minima relevant?
If so, which ones?

€th

f para

Ny¢

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e

fé
T > T4 Minima exist, but occupy a
vanishing fraction of phase space.
The ergodic paramagnetic solution
(m; = 0) dominates

frara

€th

=l

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e

fé
Tk < T< T4: Gibbs weight is dominated
by non-trivial minima f*

(cf. DPRM and REM)

The full free energy remains analytic:
fpm

" fan(T) = £ = TS(F) £ fpara(T)

€th

Minimiizer of f—T%(f)

=l

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e

fé

Tk < T< T4: Gibbs weight is dominated
by non-trivial minima f*
(cf. DPRM and REM)

The full free energy remains analytic:
Foara 2 o !
fran(T) = f* = TS(f*) = foara(T)
BUT: dynamics gets stuck in pure

states — non-ergodic

€th

=l

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies € S [emina 6th]

- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e

Tk < T< T4: Gibbs weight is dominated
by non-trivial minima f*
(cf. DPRM and REM)

The full free energy remains analytic:

U S = = TEE) S foaa(T)

BUT: dynamics gets stuck in pure
states — non-ergodic

€th

€min

Ny

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

minima exist with energies € S [emina 6th]

- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e

Tk < T< T4: Gibbs weight is dominated
by non-trivial minima f*
(cf. DPRM and REM)

The full free energy remains analytic:

U S = = TEE) S foaa(T)

BUT: dynamics gets stuck in pure
states — non-ergodic
~ Beyond mean field: onset of activated

dynamics across (finite barriers)

€th

€min

)

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e

fé

T = Tk: Freezing transition
(‘Kauzmann temperature”):
(cf. DPRM and REM)

Thermodynamic transition
fpara

€th

=l

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e

fé

T = Tk: Freezing transition
(‘Kauzmann temperature”):
(cf. DPRM and REM)

Thermodynamic transition
fpara

€th

Equilibrium free energy: Higher
than paramagnetic continuation!

=l

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e

fé

T = Tk: Freezing transition
(‘Kauzmann temperature”):
(cf. DPRM and REM)

Thermodynamic transition
fpara

€th

Equilibrium free energy: Higher
than paramagnetic continuation!

Ti 7 e  BUT. Dynamically inaccessible!



First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability'

G({m}) _ L1 o b _é B
— N Blogl p'N Z']’Ll dp Mhiy 4[1 pg" +¢"(p—1)]

’Ll Z



First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability!

G({m; B P p
%: —%logl—q _p’—N Z Jiywiy My - ' _Z[l_pq "+ ¢P(p—-1)]

21 Zp

Energy-entropy balance of freezing:

Energy gain: O(mP) Entropic cost: O(m?)



First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability!

G({m; B L p
%: —%logl—q _p’—N Z Jiywiy My - _Z[l_pq "+ ¢P(p—-1)]

21 'l/p

Energy-entropy balance of freezing:
p>2mK<l1

Energy gain: O(mP) & Entropic cost: O(m?)

Continuously emerging minima with very small m are possible only for p=2!



First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability!

G({m; B p— p
¥: —ﬁlogl—q —p,—N D JireiyMay o miy, — 21— pg”~' +¢°(p — 1)]

11 'Lp

Energy-entropy balance of freezing:
p>2mK<l1

Energy gain: O(mP) & Entropic cost: O(m?)

Continuously emerging minima with very small m are possible only for p=2!

For p > 2: intra-state overlap q jumps to finite value in the minimal!
 Discontinuous (first-order-like) onset of frozen magnetization
* No instability of paramagnetic state



Spin glass universality classes

Two different types of (mean field) spin glasses

Continuous

SK-model H = ZJUSZSJ

z<]

dE4 = - Z
T—>T

\i_\Tg/\,A/\/\/

T<Tg

Next time: “Full replica symmetry breaking”

Discontinuous

p—spin>n;0dels H = Z iy Siy i
p=

“One step replica symmetry breaking”



Given these metastable states, how does the
spin dynamics sense them?



Dynamics

T. Castellani and A. Cavagna
Spin-Glass Theory for Pedestrians, cond-mat/05605032

Langevin equation

OH

(9t0'i(t) = _80'~

— p(t)oi(t) +mi(t) with (n(t)n(t)) = 2T6(t — )
\ Enforces the spherical constraint



Dynamics

T. Castellani and A. Cavagna
Spin-Glass Theory for Pedestrians, cond-mat/05605032

Langevin equation

aI{. o ,U(t)ai(t) +n;(t) with (n(t)n(t’» = 2T6(t — t’)

0o;
\ Enforces the spherical constraint

8tai (t) = —

Correlation and response

1

Ctt)= 5 Llothn®) R0 = 4 Y5

t 1

Disorder averaged dynamics: C and R are the same as for a single spin with eWified noise:
1

oo (t) = —u(t)o(t) + §p(p —1) / dt"R(t,t")C(t,t"Y 2o (t") + £(t)

(E@)EW)) = 2To(t — ') + gC(t, £y
-3 .. Closed self-consistent equations 0.C = fo [C(t’), R(t’)] O,R = fn [C(t’), R(t’)]



Dynamics

T. Castellani and A. Cavagna
Spin-Glass Theory for Pedestrians, cond-mat/05605032

In an ergodic regime:

Expect: time translational invariance (TTI)

) C(tl, tz) = C(tl — tQ) = C(T) L
TTL: { R(t1,t3) = R(t1 — t3) = R(7) (=t —t)

Fluctuation dissipation relation: response function (dissipation) and correlation function (fluctuation)

. . A . . . ds;
are linked [time-differential version of: Xii = () = = (si55)
oh;" T

~14dC(7)
T dr

FDT:  R(r)=

—> Equation for C(7)



Dynamics

T. Castellani and A. Cavagna
Spin-Glass Theory for Pedestrians, cond-mat/0505032

In an ergodic regime:

Expect: time translational invariance (TTI)

) C(tl,tz):C(tl—tg)EC(T) L
TTL: { R(t1,t3) = R(t1 — t3) = R(7) (=t —t)

Fluctuation dissipation relation: response function (dissipation) and correlation function (fluctuation)

are linked [time-differential version of: Xii = () = = (si55)

1dC(T)
T dr
— Self-consistent evolution equation for average the spin —spin correlator C only:
C(r) = -TC(r) — 2 / du C*~ (1 — u)C(u)

Diffusion under thermal noise Counteracted (C < 0!) by memory: caging effect! Strong at low T.

FDT:  R(r)=



Dynamics

T. Castellani and A. Cavagna
Spin-Glass Theory for Pedestrians, cond-mat/0505032

In an ergodic regime:

Expect: time translational invariance (TTI)

) C(tl,tz):C(tl—tg)EC(T) L
TTL: { R(t1,t3) = R(t1 — t3) = R(7) (=t —t)

Fluctuation dissipation relation: response function (dissipation) and correlation function (fluctuation)

. . T . . . ds;
are linked [time-differential version of: Xii = () = = (si55)
oh;" T

1dC(T)
FDT: = —— p -
B =774 > O (1= C(r)
— Self-consistent evolution equation for average the spin —SW C only:

C(r) = —=TC(r) — % /OT du C’p_;({— w)C(u)

Diffusion under thermal noise Counteracted (C < 0!) by memory: caging effect! Strong at low T.



Dynamics

T. Castellani and A. Cavagna
Spin-Glass Theory for Pedestrians, cond-mat/05605032

In an ergodic regime:

Expect: time translational invariance (TTI)

) C(tl, tz) = C(tl — tQ) = C(T) L
TTL: { R(t1,t3) = R(t1 — t3) = R(7) (=t —t)

Fluctuation dissipation relation: response function (dissipation) and correlation function (fluctuation)

. . A . . . ds;
are linked [time-differential version of: Xii = () = = (si55)
oh;" T

. _1dC(7)
FOT: RN =75 > 0P (1= C(r)
— Self-consistent evolution equation for average the spin —SW Conly: At T4 get stuck (C = 0)
() = —TC(r) — 2 /T du C*( — u)C(u) in the threshold states:
21 Jo N at C=qy, !

Diffusion under thermal noise Counteracted (C < 0!) by memory: caging effect! Strong at low T.



P-spin models vs structural glasses?

Why should p-spin models be reasonable
models for supercooled liquids (structural
glasses) without disorder?

Compare dynamics!



A simple model for supercooled liquids
Kirkpatrick, Thirumalai, Wolynes

Simple liquid Hamiltonian g — @qy + L (r): local density

Langevin equation o9 g _
0 = M~ T R




A simple model for supercooled liquids
Kirkpatrick, Thirumalai, Wolynes

Simple liquid Hamiltonian g — @dg + L (r): local density
p!
Langevin equation ¢

5 = RO — s

(p—1)!

« Field theory for dynamics (perturbative expansion in g)
« Approximately resum diagrammatics (“no vertex corrections”)

“Mode coupling theory” (exact for large number of field components)
« Compare with Langevin dynamics for spherical spins with p-spin interactions:

— |dentical dynamical equations for response and correlation functions!
(even though there is no disorder in the liquid Hamiltonian!!)

Conjecture / Belief: Glass transition and structure of glass phase of p-spin
models with p>2 capture the essence of the physics of structural glasses!



